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Abstract

Syntactic parsers have dominated natural lan-
guage understanding for decades. Yet, their
syntactic interpretations are losing centrality
in downstream tasks due to the success of
large-scale textual representation learners. In
this paper, we propose KERMIT (Kernel-
inspired Encoder with Recursive Mechanism
for Interpretable Trees) to embed symbolic
syntactic parse trees into artificial neural net-
works and to visualize how syntax is used in
inference. We experimented with KERMIT
paired with two state-of-the-art transformer-
based universal sentence encoders (BERT and
XLNet) and we showed that KERMIT can in-
deed boost their performance by effectively
embedding human-coded universal syntactic
representations in neural networks.

1 Introduction

Universal sentence embeddings (Conneau et al.,
2018), which are task-independent, distributed sen-
tence representations, are redesigning the way lin-
guistic models in natural language processing are
defined. These embeddings are usually created
from scratch over large corpora without human
supervision (Cho et al., 2014; Kiros et al., 2015;
Conneau et al., 2017; Subramanian et al., 2018;
Cer et al., 2018) or are crafted with compositional
distributional semantics methods (Clark and Pul-
man, 2007; Mitchell and Lapata, 2008; Baroni and
Zamparelli, 2010; Zanzotto et al., 2010).

Traditional task-independent, symbolic, human-
defined syntactic interpretations for sentences,
which may be referred to as universal syntactic
interpretations, are losing their centrality in lan-
guage understanding systems due to the success of
transformer-based neural networks (Vaswani et al.,
2017) that have boosted performances on a wide
variety of linguistic tasks (Devlin et al., 2018; Liu
et al., 2019; Yang et al., 2019).

There is evidence that universal sentence embed-
dings store bits of universal syntactic interpreta-
tions. Even if not explicitly designed for encoding
syntax, these embeddings implicitly capture syntac-
tic relations among words with different strategies.
Transformers (Devlin et al., 2018; Liu et al., 2019;
Yang et al., 2019; Dai et al., 2019) seem to capture
syntactic relations among words by “focusing the
attention”. Yet, to be sure that syntax is encoded,
many syntactic probes (Conneau et al., 2018) for
neural networks have been designed to test for spe-
cific phenomena (Kovaleva et al., 2019; Jawahar
et al., 2019; Hewitt and Manning, 2019; Ettinger,
2019; Goldberg, 2019) or for full syntactic trees
(Hewitt and Manning, 2019; Mareček and Rosa,
2019). Indeed, some syntax is correctly encoded in
these universal sentence embeddings.

However, universal sentence embeddings encode
syntax in a way that is opaque and not so univer-
sal. Firstly, and perhaps surprisingly, task-adapted
universal sentence embeddings encode syntax bet-
ter than general universal sentence embeddings
(Jawahar et al., 2019). Secondly, even if these em-
beddings contains syntactic information and may
be “just another way in which traditional syntactic
models are encoded” (Fodor and Pylyshyn, 1988),
there is no clear view on how this information is
encoded and, hence, on how syntactic information
is holistically (Chalmers, 1992) used in inference.
Then, it is difficult to envisage ways to symboli-
cally control the behavior of neural networks.

In this paper, we investigate whether explicit
universal syntactic interpretations can be used to
improve state-of-the-art universal sentence embed-
dings and to create neural network architectures
where syntax decisions are less obscure and, thus,
syntactically explainable. For this purpose we pro-
pose KERMIT, a Kernel-inspired Encoder with
a Recursive Mechanism for Interpretable Trees,
and KERMITviz . KERMIT is a lightweight en-
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Figure 1: The KERMIT+Transformer architecture, for-
ward and interpretation pass. During the forward pass
parse trees are passed inactive (black and white trees).
During the interpretation pass activations are back-
propagated and heat parse trees are produced (colored
trees).

coder for embedding syntax parse trees in universal-
syntax-encoding vectors by explicitly embedding
subtrees in the representation space. KERMITviz
is a visualizer to inspect how syntax is used in tak-
ing final decisions in specific tasks. We showed
that KERMIT can effectively embed different syn-
tactic information and KERMITviz can explain
KERMIT’s decisions. Furthermore, paired with
universal sentence embeddings, KERMIT outper-
forms state-of-the-art models - BERT (Devlin et al.,
2018) and XLNet (Yang et al., 2019) - in three dif-
ferent downstream tasks, albeit findings in Kuncoro
et al. (2020), showing that traditional syntactic in-
formation is not represented in universal sentence
embeddings.

2 Background and Related Work

Embedding symbolic syntactic or structured infor-
mation within neural networks is a very active re-
search field given the impression that using pre-
existing syntactic knowledge in neural networks
can be beneficial for many tasks. Initial attempts
have tried to recursively encode structures in dis-
tributed representations to use them inside neu-
ral networks (Pollack, 1990; Goller and Kuechler,
1996). More recently, Socher et al. (2011) have
defined the notion of Recursive Neural Networks
(RecNN) that are Recurrent Neural Networks ap-
plied to binary trees. Initially, these RecNNs have

been used to parse sentences and not to include pre-
existing syntax in a final task (Socher et al., 2011).
Then, these RecNNs have been used to encode pre-
existing syntax in the specific task of Sentiment
Analysis (Socher et al., 2012, 2013). With the rise
of Long Short-Term Memories (LSTMs), Tai et al.
(2015); Zhu et al. (2015) and Zhang et al. (2016)
independently proposed TreeLSTM as an adapted
version of LTSM that may use syntactic informa-
tion. In TreeLSTM, the LSTM is applied following
the structure of a binary tree instead of following an
input sequence. In semantic relatedness and in sen-
timent classification, TreeLSTM has outperformed
RecNN (Tai et al., 2015) by using pre-existing syn-
tactic information. TreeLSTM has also been used
to induce task-specific trees while learning a novel
task (Choi et al., 2018). Moreover, Munkhdalai
and Yu (2017) have specialized LSTM for binary
and n-ry trees with their Neural Tree Indexers and
Strubell et al. (2018) have encoded syntactic in-
formation by using multi-head attention within a
transformer architecture.

However, there is a major problem with the meth-
ods for embedding syntactic structures in neural
networks, it is unclear which parts of the parse trees
are represented, and how. Hence, the behavior of
neural networks that use these embeddings is ob-
scure. It is then difficult to understand what kind
of syntactic knowledge is encoded in the different
layers and how this syntactic knowledge is used.

Some initial attempts to clarify which syntac-
tic parts are encoded in embedding vectors exist.
Zhang et al. (2018) have encoded parse trees by
means of paths connecting the root of parse trees
with words. Yet, these attempts are still far from
completely representing parse trees.

For a long time, structural kernel functions have
been the way to exploit syntactic information in
learning but these functions cannot be used within
neural networks. Kernel machines (Cristianini and
Shawe-Taylor, 2000) exploit these, generally recur-
sive, structural kernel functions that define a sim-
ilarity measure between two trees counting com-
mon substructures. Hence, these structural kernel
functions are built over a clear, although hidden,
space of substructures. Structural kernels have been
defined for both constituency-based (Collins and
Duffy, 2002; Moschitti, 2006) and dependency-
based parse trees (Culotta and Sorensen, 2004). As
underlying spaces are well defined, it is even possi-
ble to extract back substructures that are relevant in
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each decision (Pighin and Moschitti, 2010). How-
ever, these structural kernel functions are generally
recursive algorithms that hide the real underlying
space of features. Thus, structures are never repre-
sented as vectors in the target representation spaces
as these spaces are generally huge. It is generally
impossible then to use these clear spaces in learn-
ing with neural networks.

In the field of structural kernels, distributed tree
kernels (Zanzotto and Dell’Arciprete, 2012) have
opened an interesting possibility. To reduce the
computational cost of tree kernels, these distributed
tree kernels embed the huge space of substruc-
tures in a smaller space. This embedding is ob-
tained by using recursive functions, which are lin-
ear with respect to the tree size. Hence, structures
are represented in a smaller vector in an embedded
space that represents the original space of struc-
tures. Hence, DTKs open an interesting path to
include clear syntactic information in neural net-
work architectures (Zanzotto and Ferrone, 2017;
Santilli and Zanzotto, 2018).

3 The model

This section introduces our Kernel-inspired En-
coder with a Recursive Mechanism for Inter-
pretable Trees (KERMIT) (Sec.3.2) along its vi-
sualizer KERMITviz (Sec.3.3). KERMIT is a
lightweight encoder for universal syntactic inter-
pretations which can be used in combination with
transformer-based networks such as BERT (Devlin
et al., 2018) and XLNet (Yang et al., 2019) (Fig.
1). Some preliminary notations are given in Sec-
tion 3.1.

3.1 Preliminary notation

This section fixes the notation for parse trees, ran-
dom vectors and operations on random vectors as
these are core representations in our model to deal
with universal syntactic interpretations.

Parse trees T and parse subtrees τ are recursively
represented as trees t = (r, [t1, ..., tk]) where r
is the label representing the root of the tree and
[t1, ..., tk] is the list of child trees ti. Leaves t are
represented as trees t = (r, []) with an empty list
of children or directly as t = r.

On parse trees T , our model KERMIT requires
the definition of three sets of subtrees: the set
N(T ), the set S(T ) and the set of S(T ). The
last two sets are defined according to subtrees we
want to model in the embeddings of the universal

syntactic interpretations. We use subtrees defined
in Collins and Duffy (2002). The set N(T ) con-
tains all the complete subtrees of T . Given a tree
T and r one of its nodes, a complete subtree of T
from r is the subtree rooted in r that reaches the
leaves, for example (see the parse tree in Fig. 1):
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The set S(T ) contains all the valid subtrees of
T = (r, [t1, ..., tk]) as follows (r, []) is in S(T )
and each (r, [τ1, ..., τk]) where τi ∈ S(ti) are in
S(T ), for example:
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Finally, the set S(T ) is the union of the sets S(t)
for all the trees t ∈ N(T ), that is:

S(T ) =
⋃

t∈N(T )

S(t)

and it contains the subtrees used during training
and inference.

Finally, to build the untrained KERMIT en-
coder, we use the properties of random vectors
drawn from a multivariate Gaussian distribution
v ∼ N (0, 1√

d
I). These vectors guarantee that

uTv ≈ 0 if u 6= v and uTu ≈ 1. This prop-
erty is extremely important for interpretability. To
compose vectors, we use the shuffled circular con-
volution u ⊗ v. If these vectors are drawn from
a multivariate Gaussian distribution, the function
guarantees that (u ⊗ v)Tu ≈ 0, (u ⊗ v)Tv ≈ 0
and (u⊗v) 6= (v⊗u). This operation is a circular
convolution ? (as for Holographic Reduced Repre-
sentations (Plate, 1995)) with a permutation matrix
Φ: u ⊗ v = u ∗ Φv. This operation is extremely
important for soundly composing node vectors.

3.2 The encoder for parse trees and its
sub-network

KERMIT is a lightweight neural layer that allows
the encoding and use of universal syntactic inter-
pretations in neural networks architectures. This
layer has two main components. The first compo-
nent is the KERMIT encoder that actually encodes
parse trees T in embedding vectors:

y = D(T ) (1)
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which corresponds to the gray arrow and the gray
box in the KERMIT side of Fig. 1. The second
component is a multi-layer perceptron that exploits
these embedding vectors:

z = mlp(y) (2)

which corresponds to green area in the KERMIT
side of Fig. 1.

The KERMIT encoder D in Eq. 1 stems from
tree kernels (Collins and Duffy, 2002) and dis-
tributed tree kernels (Zanzotto and Dell’Arciprete,
2012). It makes it possible to represent parse trees
in vector spaces Rd that embed huge spaces of
subtrees Rn where n is the huge number of differ-
ent subtrees. Each tree T is represented by using
the set of its valid subtrees S(T ). The encoder is
based on an embedding layer for tree node labels
xr = Wor ∈ Rd and on a recursive encoding
function based on the shuffled circular convolu-
tion ⊗ introduced by Zanzotto and Dell’Arciprete
(2012). The embedding layer xr = Wor ∈ Rd

is an untrained encoding function that maps one-
hot vectors r of tree node labels r to random vec-
tors drawn from the previously introduced multi-
variate Gaussian distribution N (0, 1√

d
I). Hence,

Wo ∈ Rm×d is a matrix of m columns where m is
the cardinality of the set of node labels and each col-
umn w(i) of the matrix Wo is w(i) ∼ N (0, 1√

d
I).

The function D(T ) is defined as a the sum of re-
cursive function Υ(t) on parse trees:

y = D(T ) =
∑

t∈N(T )

Υ(t)

where N(T ) is the previously defined set of com-
plete subtrees of T . Then, Υ(t) is defined as:

Υ(t)=


√
λWor if t = (r, [])√
λ(Wor + Wor ⊗Υ(t1)⊗ ...⊗Υ(tk))

if t = (r, [t1, ..., tk])

where 0 < λ ≤ 1 is a decaying factor penalizing
large subtrees (Collins and Duffy, 2002; Zanzotto
and Dell’Arciprete, 2012). By implementing D(T )
with a dynamic algorithm, its computational cost
is linear with respect to the nodes of the tree T and
the cost of the basic function ⊗ is d log d where d
is the size of the representation space Rd. In fact,
the circular convolution can be computed with Fast
Fourier Transformation.

Given its nature, the tree neural encoder has
a nice interpretation as a very simple embedding

layer, that is, WΥ ∈ Rd×n that embeds the space
of subtrees in a smaller space Rd. This is in line
with the Johnson-Lindenstrauss Transformation
(Johnson and Lindenstrauss, 1984). Hence, D(T )
can be seen as the following:

y = D(T ) = WΥx (3)

where x is the vector representing the set of sub-
trees S(T ), that is, the sum of

√
λkxt where xt

is one-hot vector representing t ∈ S(T ), λ is the
decaying factor for penalizing large trees and k is
the number of nodes of the tree t. It is possible
and easy to show that columns wi of WΥ encode
subtrees t as follows:

w(i)=Γ(t(i))=


Wor if t(i) = (r, [])

Wor ⊗ Γ(t
(i)
1 )⊗ ...⊗ Γ(t

(i)
k )

if t = (r, [t
(i)
1 , ..., t

(i)
k ])

for example:

Γ(

VP

V NP

A J

tasty

N

soup

) =
WoeV P ⊗ (WoeN ⊗WoeNP

⊗(WoeA ⊗ (WoeJ ⊗Woetasty)
⊗(WoeN ⊗Woesoup)))

where
√
λ8 is the decay factor applied to the sample

subtree with 8 nodes.
Given the properties of the vectors E(r) ∼
N (0, 1√

d
I) and the properties of the shuffled cir-

cular convolution ⊗, it is possible to empiri-
cally demonstrate that Γ(ti)

TΓ(ti) ≈ 1 and
Γ(ti)

TΓ(tj) ≈ 0 (Plate, 1995; Zanzotto and
Dell’Arciprete, 2012). Hence, this property can
be used to interpret the behavior of the decision in
the neural network.

3.3 Visualizing Neural Network Activation
on Syntactic Trees

The definitions of the KERMIT encoder make it
possibile to devise KERMITviz , which offers pre-
diction interpretability (Jacovi et al., 2018) in the
context of textual classification. We propose a clear
causal relation for explaining (Lipton, 2016) clas-
sification decisions where syntax is important by
defining heat parse trees and calculating the rele-
vance of single subtrees with layer-wise relevance
propagation (LRP) (Bach et al., 2015). LRP has
already been used in the context of explaining de-
cisions in natural language processing tasks (Croce
et al., 2019b,a).

Heat parse trees (HPTs), similarly to “heat trees”
in biology (Foster et al., 2017), are heatmaps over
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parse trees (see the colored tree in Fig. 1). The
underlying representation is an active tree t, that
is a tree where each node t = (r, vr, [t1, ..., tk])
has an activation value vr ∈ R associated. HPTs
are graphical visualizations of active trees t where
colors and sizes of nodes r depend on their activa-
tion values vr. In this way, HPTs highlight parts of
parse trees relevant in final decisions.

To draw HPTs, we compute activation value vr
of nodes r in active tree t by using Layer-wise
Relevance Propagation (LRP) (Bach et al., 2015)
and the property in Eq. 3 of the KERMIT encoder
D. LRP is a framework which explains decisions of
a generic neural network using local redistribution
rules that propagate back decisions to activation
values of initial features. In our case, this is used
as a sort of inverted function of the multi-layer
perceptron in Eq. 2, that is:

yLRP = mlp−1LRP (z)

The property in Eq. 3 enables the activation of each
subtree t ∈ T to be computed back by transposing
the matrix WΥ, that is:

xLRP = WΥ
TyLRP

To make the computation feasible, WΥ
T is pro-

duced on-the-fly for each tree T . Finally, activa-
tion values vr of nodes r ∈ T are computed by
summing up values x(i)

LRP if r ∈ t(i).

4 Experiments

We aim to investigate whether KERMIT can be
used to create neural network architectures where
universal syntactic interpretations are useful: (1) to
improve state-of-the-art universal sentence embed-
dings, especially in computationally light environ-
ments, and (2) to syntactically explain decisions.

The rest of the section describes the experimen-
tal set-up, the quantitative experimental results of
KERMIT and discusses how KERMITviz can be
used to explain inferences made by neural networks
over examples.

4.1 Experimental Set-up
This section describes the general experimental
set-up of our experiments, the specific configu-
rations adopted in the completely universal and
task-specific settings, the used computational archi-
tecture and the datasets.

The general experimental settings are described
hereafter. Firstly, the core of our method KERMIT

encoder has been tested on a distributed represen-
tation space Rd with d = 4000 with the penaliz-
ing factor λ set to λ = 0.4 as this has been con-
sidered a common value in previous works (Mos-
chitti, 2006). Secondly, constituency parse trees
for KERMIT have been obtained by using Stan-
ford’s CoreNLP probabilistic context-free gram-
mar parser (Manning et al., 2014). Thirdly, the fol-
lowing transformer sub-networks have been used:
(1) BERTBASE, used in the uncased setting with
the pre-trained English model; (2) BERTLARGE,
used with the same settings of BERTBASE; and,
(3) XLNet base cased. All the models were imple-
mented using Huggingface’s transformers library
(Wolf et al., 2019). The input text for BERT and
XLNet has been preprocessed and tokenized as
specified in respectively in Devlin et al. (2018)
Yang et al. (2019). Fourthly, as the experiments
are text classification tasks, the decoder layer of
our KERMIT+Tranformer architecture is a fully
connected layer with the softmax activation func-
tion applied to the concatenation of the KERMIT
output and the final [CLS] token representation
of the selected transformer model. Finally, the
optimizer used to train the whole architecture is
AdamW (Loshchilov and Hutter, 2019) with the
learning rate set to 3e−5.

In the completely universal setting, KERMIT
is composed only by the first lightweight encoder
layer (grey layer in Figure 1) (KERMITENC). In
this setting, we used BERTBASE and XLNet. To
study universality, transformers’ weights are fixed
in order to avoid the representation drifting to-
ward the data distribution of the task. More-
over, we also experimented with BERTBASE-
Reverse and BERTBASE-Random to understand
whether syntactic or structural information is im-
portant for the specific task. In fact, BERTBASE-
Reverse is BERTBASE with a reversed text as in-
put and BERTBASE-Random is BERTBASE with
a randomly shuffled text as input. Compar-
ing BERTBASE with BERTBASE-Reverse and
BERTBASE-Random is in itself an extremely im-
portant test as it offers also a way to determine if
syntactic information is useful for a specific task.
The KERMIT+Tranformer is trained with a batch
size of 125 for 50 epochs. In addition, each exper-
iment has been repeated 5 times with 5 different
fixed seeds to assess the statistical significance of
experimental results. This setting is designed to
asses whether universal syntactic interpretations
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Model AGNews Yelp Review DBPedia Yelp Polarity
XLNet 79.11(±0.12)? 46.26(±0.13)? 92.46(±0.09)? 81.99(±0.15)?

BERTBASE 82.88(±0.09)� 42.90(±0.05)� 97.11(±0.27)� 79.21(±0.50)�

BERTBASE-Reverse 79.72(±0.11) 38.14(±0.09) 90.46(±0.09) 72.23(±0.50)
BERTBASE-Random 80.39(±0.20) 38.15(±0.08) 91.55(±0.20) 71.02(±0.50)

KERMITENC 25.23(±0.14) 49.58(±0.10) 69.10(±0.06) 85.91(±0.03)
KERMITENC+XLNet 77.88(±0.12)? 53.72(±0.14)? 94.51(±0.05)? 88.99(±0.17)?

KERMITENC+BERTBASE 77.02(±0.13)� 52.02(±0.06)� 97.73(±0.16)� 87.58(±0.17)�

Table 1: Universal Setting - Average accuracy and standard deviation on four text classification tasks. Results de-
rive from 5 runs and ? and � indicate a statistically significant difference between two results with a 95% confidence
level with the sign test.

add different information with respect to univer-
sal sentence embeddings and whether universal
syntactic interpretations are a viable solution to in-
crease the performance of neural networks in light
computational systems.

In the task-adapted setting, we used two dif-
ferent architecture of BERT, BERTBASE and
BERTLARGE, and we trained different layers of
these architectures. In this way, BERT may adapt
the universal sentence embeddings to include task-
specific information which is the specific lexicon
that may drive syntactic analysis. For the KER-
MIT side of the architecture, we used two different
multi-layer perceptrons: (1) a funnel MLP with two
linear layers that brings the 4,000 units of the KER-
MIT encoder down to 200 units with an intermedi-
ate level of 300 units (KERMIT.); (2) a diamond
MLP with four linear layers forming a diamond
shape: 4,000 units, 5,000 units, 8,000 units, 5,000
units and, finally 4,000 units (KERMIT�). Both
KERMIT. and KERMIT� have ReLU (Agarap,
2018) activation functions and dropout (Srivastava
et al., 2014) set to 0.25 for each layer. Due to
the computational demand of these architectures
and these experiments, we used the heavy system
and we trained the overall model in two settings:
a one-epoch training session and a normal train-
ing session. In the one-epoch training session, we
trained the architecture with 1 epoch (Komatsuzaki,
2019) to avoid overfitting and to guarantee the pos-
sibility of having a relatively light computational
burden. In the normal training session, we trained
the architecture for 5 epochs. The batch size for
these two settings was 32.

We experimented with two hardware systems: a
light system and a heavy system. The light system
is an affordable old desktop consisting of a 4 Cores
Intel Xeon E3-1230 CPU with 62 Gb of RAM and
1 Nvidia 1070 GPU with 8Gb of onboard memory.

The heavy system is a more expensive, dedicated
server consisting of an IBM PowerPC 32 Cores
CPU with 256 Gb of RAM and 2 Nvidia V100
GPUs with 32Gb of on board memory each.

To verify our model, we experimented with four
classification tasks1 (Zhang et al., 2015) which
should be sensitive to syntactic information. The
tasks include: (1) AGNews, a news classification
task with 4 target classes; (2) DBPedia, a classi-
fication task over wikipedia with 14 classes; (3)
Yelp Polarity, a binary sentiment classification task
of Yelp reviews; and (4) Yelp Review, a sentiment
classification task with 5 classes. Given the com-
putational constraints of the light system setting,
we created a smaller version of the original train-
ing datasets by randomly sampling 11% of the ex-
amples and keeping the datasets balanced as the
original versions.

For reproducibility, the source code of our exper-
iments is publically available2.

4.2 Results and Discussion
Results from the completely universal experimen-
tal setting suggest that universal syntactic interpre-
tations complement syntax in universal sentence
embeddings. This conclusion is derived from the
following observations of Table 1, which reports
results in terms of the accuracy of the different
models based on the different datasets. All these
experiments were carried out on the light system.

Firstly, syntactic or structural information seems
to be relevant in three out of four tasks. Syntac-
tic information in AGNews seems to be irrelevant
as there is a small difference in results between
BERTBASE, on the one side, with 82.88(±0.09)
and BERTBASE-Reverse with 79.72(±0.11) and

1http://goo.gl/JyCnZq
2The code is available at https://github.com/

ART-Group-it/KERMIT

https://github.com/ART-Group-it/KERMIT
https://github.com/ART-Group-it/KERMIT
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Figure 2: Comparison between KERMIT+BERT and BERT when training layers in BERT: Accuracy vs. Learned
Layers in two different learning configurations - 1-Epoch and 5-Epoch training

BERTBASE-Random with 80.39(±0.20), on the
other. This small difference suggests that the order
of words in the text is not particularly relevant and
the classification is made on the lexical level. This
justifies the very poor result from KERMITENC in
this dataset, that is 25.23(±0.14).

Secondly, KERMITENC alone outperforms
BERTBASE and XLNet in two cases where syn-
tactic information is relevant, that is, 49.58(±0.1)
vs. 42.90(±0.05) and 46.26(±0.13) in Yelp
Review and 85.91(±0.03) vs. 79.21(±0.5)
and 81.99(±0.15) in Yelp polarity. Hence,
KERMITENC provides a good model for includ-
ing universal syntactic interpretations in a neu-
ral network architecture. However, KERMITENC
performed worse with respect to XLNet and
BERTBASE in DBPedia even if syntactic infor-
mation seems to be useful. This may be justi-
fied as both XLNet and BERTBASE are trained on
Wikipedia, thus universal sentence embeddings are
already adapted to the specific dataset.

Thirdly, in the three cases where syntactic infor-
mation is relevant (Yelp Review, Yelp Polarity and
DBPedia), the complete KERMIT+Transformer
outperforms the model that is based only on the
related Transformer, and the difference is statisti-
cally significant: 53.72(±0.14) vs. 46.26(±0.13)
in Yelp Review, 94.51(±0.05) vs. 92.46(±0.09)
in DBPedia and 88.99(±0.17) vs. 81.99(±0.15)

in Yelp Polarity for XLNet and 52.02(±0.06)
vs. 42.90(±0.05) in Yelp Review, 97.73(±0.16)
vs. 97.11(±0.27) in DBPedia and 87.58(±0.17)
vs. 79.21(±0.50) in Yelp Polarity for BERTBASE.
Even in DBPedia where transformers’ embeddings
are pretrained, KERMIT+Transformer outperforms
the model based only on the related transformer.

This last observation is a very important indi-
cation and, together with the other observations,
confirms that universal sentence embeddings en-
code different syntactic information with respect
to that defined in universal syntactic interpreta-
tions. Moreover, our KERMIT encoder allows neu-
ral networks to positively use universal syntactic
interpretations. Hence, using universal syntactic
interpretations is a viable solution also when only
light computational systems are available.

Experiments in the task adapted setting: (1)
show that universal syntactic interpretation is still
useful even when universal sentence embeddings
are adapted to the specific task; (2) confirm the con-
clusions of Jawahar et al. (2019) that universal sen-
tence embeddings better capture syntactic phenom-
ena when the middle layers of BERT are learned
over the task. The results of these experiments are
plotted in Figure 2 where system accuracy is plot-
ted against the number of BERT’s learned layers
starting from the output layer. In fact, it seems
that different BERT’s layers encode different in-
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Figure 3: KERMITviz vs. BERTviz: Comparing interpretations over KERMIT and over BERT on two sample
sentences of Yelp Review where the word but is correlated or not with the final polarity.

formation Jawahar et al. (2019). Hence, learning
different layers in a specific setting means adapting
that kind of information. We experimented with
two sub-settings: (1) a computationally lighter set-
ting where training is done only for 1 epoch; (2) a
more expensive setting where training is done for
5 epochs.

Our results in the task adapted setting confirms
that BERT adapts universal sentence embeddings
to include a better syntactic model when its weights
in different layers are trained over the specific cor-
pus. Moreover, as shown in Jawahar et al. (2019),
layers in the middle cover better syntactic phenom-
ena. In fact, when BERT learns up to the 8th layer,
BERT’s accuracy seems to come closer to the best
model including universal syntactic interpretations
(see Figure 2) . This suggests that more syntax is
encoded in BERT.

All these experiments were performed also using
BERTLARGE in place of BERTBASE, but in all the
experiments results were worse compared to the
base version, therefore not reported in the paper.

When syntax matters, that is, in Yelp Review and
in Yelp Polarity, KERMIT is able to exploit univer-
sal syntactic interpretation to compensate for miss-
ing syntactic information in the task-adapted sen-
tence embeddings of a trained BERT. In fact, KER-
MIT+BERT outperforms a trained BERTBASEin

both the 1-epoch and 5-epoch settings for any num-
ber of trained layers (see Figure 2). In the 1-
epoch setting, KERMIT�+BERTBASE outperforms
BERTBASE and all the other configurations. In the
5-epoch setting, KERMITENC+BERTBASE is the
best model.

Moreover, KERMIT-based models behave better
with less training. In fact, KERMIT-based models
learned in the 1-epoch setting, outperform models
learned in the 5-epoch setting. Plots in Figure 2
report the best 1-epoch setting model in the plots
of the 5-setting model. This can be linked to the
fact that KERMIT with more parameters overfits
on training. In fact, KERMITENC+BERTBASE out-
performs the funnel and diamond KERMIT-based
systems. KERMITENC has fewer parameters than
KERMIT. and KERMIT�.

Finally, we explored the interpretative power of
KERMITviz comparing it with the transformer vi-
sualizer BERTviz (Vig, 2019). We focused on two
examples of Yelp Reviews where the coordinating
conjunction but plays an important role (see Fig.
3): (1) “Unique food, great atmosphere, pricey
but worth a trip for special occasions.”; (2) “The
boba drink was terrible, but the shaved ice was
good.”. The two sentences have 4 and 3 as ratings,
respectively. In fact, the but in the first sentence
introduces a coordinated sentence that does not
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change the rating. On the contrary, the but in the
second sentence introduces a coordinated sentence
but the shaved ice was good that radically changes
the polarity. In the case of BERTviz, this causal
relationship is extremely difficult to grasp from the
visual representation. In fact, BERTviz is a good
visualization mechanism for seeing how models as-
sign weights to different input elements (Bahdanau
et al., 2015; Belinkov and Glass, 2019), but it is
extremely obscure in explaining causal relations
in classification predictions (Wiegreffe and Pinter,
2019). Instead, KERMITviz with its tree heat maps
show exactly that the but and the related syntac-
tic structure is irrelevant in the first sentence and
extremely relevant in the second. Hence, our heat
parse trees can be useful to draw the causal relation
between the decision and the information used.

5 Conclusions

Universal syntactic interpretations are valuable lan-
guage interpretations, which have been developed
in years of study. In this paper, we introduced
KERMIT to show that these interpretations can
be effectively used in combination with univer-
sal sentence embeddings produced from scratch.
Moreover, KERMITviz allows us to explain how
syntactic information is used in classification de-
cisions within networks combining KERMIT, on
the one side, and BERT or XLNet on the other.
We also showed that KERMIT can be easily used
in situations where training large transformers is
extremely difficult.

As KERMIT has a clear description of the used
syntactic subtrees and gives the possibility of vi-
sualizing how syntactic information is exploited
during inference, it opens the possibility of devis-
ing models to include explicit syntactic inference
rules in the training process.

Finally, KERMIT is in the line of research of
Human-in-the-Loop Artificial Intelligence (Zan-
zotto, 2019), since it gives the opportunity to track
how human knowledge is used by learning algo-
rithms.
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